If A and B are events such that
$$P(A) = 0.4$$
, $P(B) = 0.3$ and $P(A \cup B) = 0.5$, then $P(B' \cap A)$ equals to (b) $\frac{1}{2}$

(d)
$$\frac{1}{5}$$

$$(A) = 0.4, P(B) = 0.3 \text{ and } P(A \cup B) = 0.5$$

Here,
$$P(A) = 0.4$$
, $P(B) = 0.3$ and $P(A \cup B) = 0.5$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \cap B) = 0.4 + 0.3 - 0.5 = 0.2$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \cap B) = 0.4 + 0.3 - 0.5 = 0.2$
 $P(B' \cap A) = P(A) - P(A \cap B)$

 $= 0.4 - 0.2 = 0.2 = \frac{1}{5}$